

D. S. Dhakre & D. Bhattacharya
Institute of Agriculture, Visva-Bharati
Sriniketan

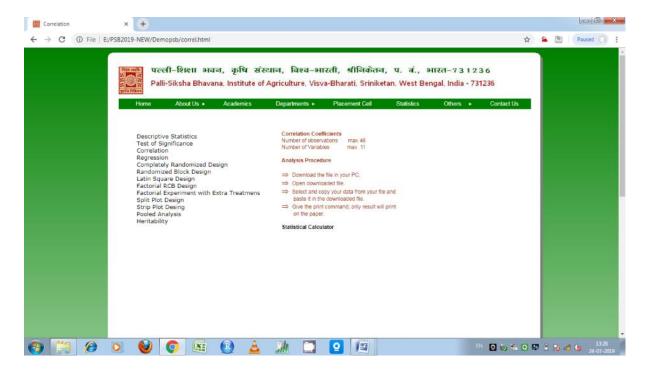
Statistical Analysis Step-by-Step Using Statistical Calculator for Correlation Coefficient

D. S. Dhakre and D. Bhattacharya

Institute of Agriculture, Visva-Bharati, Sriniketan, West Bengal -731 236, India

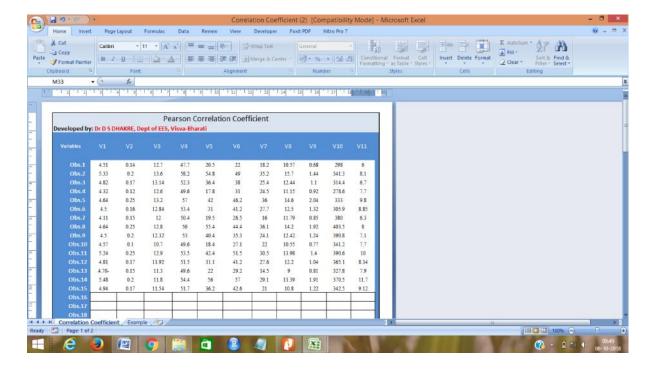
Methodology

We follow the steps described below to get the data analyzed and finding its outputs:


Step 1: Type <u>www.psbvb.in</u> in any browser that will open the following web page:

Step 2: Then click on Statistical Analysis which will open the page given below:

Step 3: Click on correlation the following page will show up:



Step 4: Then click on correlation coefficient, then that will download the statistical calculator of correlation coefficient within a second. You can keep it in your computer

or laptop forever. Next, you click on the downloaded file which is an excel file, a data spreadsheet will open up. Here you can analyse upto 11 number of variables with 46 observations each. Now you can enter your data directly in the given spreadsheet or copy from other sheet and paste it on the spreadsheet.

Example 3.1: Find the correlation coefficient and its significance for the following data:

V₁=pH	V ₂ =EC	V ₃ =CEC	V ₄ =Porosity	V ₅ =Sand	V ₆ =Silt	V ₇ =clay	V ₈ =LR	V ₉ =OC	V ₁₀ =N	V ₁₁ =P
4.51	0.14	12.7	47.7	20.5	22	18.2	10.57	0.68	298	6
5.33	0.2	13.6	58.2	54.8	49	35.2	15.7	1.44	341.3	8.1
4.82	0.17	13.14	52.3	36.4	38	25.4	12.44	1.1	314.4	6.7
4.32	0.12	12.6	49.6	17.8	31	24.5	11.15	0.92	278.6	7.7
4.64	0.25	13.2	57	42	46.2	36	14.6	2.04	333	9.8
4.5	0.16	12.84	53.4	31	41.2	27.7	12.5	1.32	305.9	8.85
4.11	0.15	12	50.4	19.5	26.5	16	11.79	0.85	380	6.3
4.64	0.25	12.8	56	55.4	44.4	36.1	14.2	1.92	403.5	8
4.5	0.2	12.32	53	40.4	35.3	24.1	12.42	1.24	390.8	7.1
4.57	0.1	10.7	49.6	18.4	27.1	22	10.55	0.77	341.2	7.7
5.24	0.25	12.9	53.5	42.4	51.5	30.5	13.98	1.4	390.6	10
4.81	0.17	11.92	51.5	31.1	41.2	27.6	12.2	1.04	365.1	8.34
4.70-	0.15	11.3	49.6	22	29.2	14.5	9	0.81	327.8	7.9
5.48	0.2	11.8	54.4	56	57	29.1	13.39	1.91	370.5	11.7
4.94	0.17	11.54	51.7	36.2	42.6	21	10.8	1.22	342.5	9.12

Step 5: Now, you click on print command, then that command will start analysis of the data and produces the results in a printable format. If a printer is attached to the

computer, then you can take a print out of the results. Otherwise, you can see your results in a print preview mode and the following will come up:

Output

V	/ariables	V1	V2	V3	V4	V5	V6	V7	V8	V9	V10	V11		
^	r	1	0.462	0.140	0.528	0.735	0.822	0.510	0.535	0.491	0.251	0.688		
	sig				*	**	**		*			**		
	p-value		0.082	0.619	0.042	0.002	0.000	0.051	0.039	0.062	0.366	0.004		
	N		15	15	15	15	15	15	15	15	15	15		
٧2	r		1	0.547	0.797	0.820	0.749	0.741	0.779	0.844	0.595	0.497		
	sig		'	*	**	**	**	**	**	**	*	0.431		
	p-value			0.034	0.000	0.000	0.001	0.001	0.001	0.000	0.018	0.058		
	N			15	15	15	15	15	15	15	15	15		
				13	13	10	13	13	13	13	-	- 13		
	r			1	0.585	0.453	0.360	0.627	0.720	0.426	0.120	0.031		
V3	sig				*			*	**					
	p-value				0.021	0.088	0.185	0.012	0.002	0.112	0.671	0.913		
	N				15	15	15	15	15	15	15	15		
	r				1	0.881	0.810	0.883	0.917	0.873	0.388	0.509		
44	sig					**	**	**	**	**				
>	p-value					0.000	0.000	0.000	0.000	0.000	0.151	0.051		
	N					15	15	15	15	15	15	15		
	r					1	0.874	0.789	0.817	0.865	0.528	0.569		
75	sig						**	**	**	**	*	*		
>	p-value						0.000	0.000	0.000	0.000	0.042	0.026		
	N						15	15	15	15	15	15		
	r						1	0.774	0.758	0.840	0.404	0.837		
9/	sig							**	**	**		**		
>	p-value							0.001	0.001	0.000	0.134	0.000		
	N							15	15	15	15	15		
	r							1	0.908	0.837	0.268	0.510		
//	sig								**	**				
	p-value								0.000	0.000	0.333	0.051		
	N								15	15	15	15		
8/	r								1	0.787	0.398	0.405		
	sig									**		-		
	p-value									0.000	0.140	0.133		
	N									15	15	15		
6/	r									1	0.414	0.703		
	sig											**		
	p-value										0.123	0.003		
V10	N										15	15		
	r sig										1	0.239		
	_											0.000		
	p-value											0.389		
_	N											15 1		
V11														
	** correlation is significant at the 0.01 level						* correlation is significant at the 0.05 level							

References

- Microsoft Excel-Microsoft Corporations, One Microsoft Way Redmond, WA 98052-6399
- 2. A Hand Book of Agricultural Statistics, S. R. S. Chandel, Achal Prakashan Mandir, Kanpur.
- 3. Biometrical Methods in Quantitative Genetic Analysis, R.K. Singh and B. D. Chaudhary, Kalyani Publishers.
- 4. Statistics Theory and Practice, D. Bhattacharya and S. Roy Chowdhury, U. N. Dhur & Sons.