
SPSS Practical Manual on Normality Checking of Data

D. S. Dhakre, D. Bhattacharya and Bhola Nath

Institute of Agriculture, Visva-Bharati, Sriniketan West Bengal -731 236, India

SPSS Practical Manual on Normality Checking of Data

D. S. Dhakre, D. Bhattacharya and Bhola Nath

Institute of Agriculture, Visva-Bharati, Sriniketan West Bengal -731 236, India

Example:

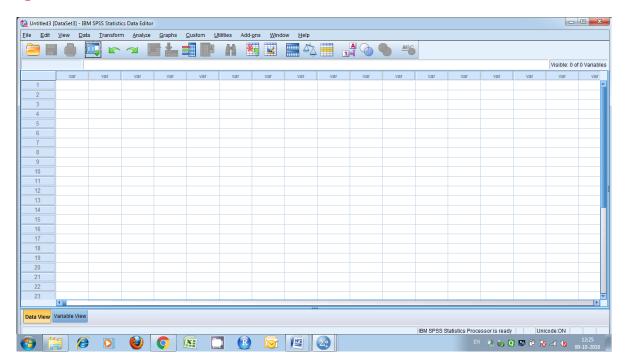
The following table gives the yields in pound per plot, of seven varieties of a crop after being applied to each of 4 plots, tested in a Completely Randomized Design. Test data is normal or not

treatment	R1	R2	R3
t1	17.8	24.4	18.1
t2	20.2	22.7	23
t3	15.7	16.4	18.8
t4	19.7	15.3	19.8
t5	19.4	20.3	23.7
t6	17.7	18.6	21.1
t7	21.7	21.6	17.4

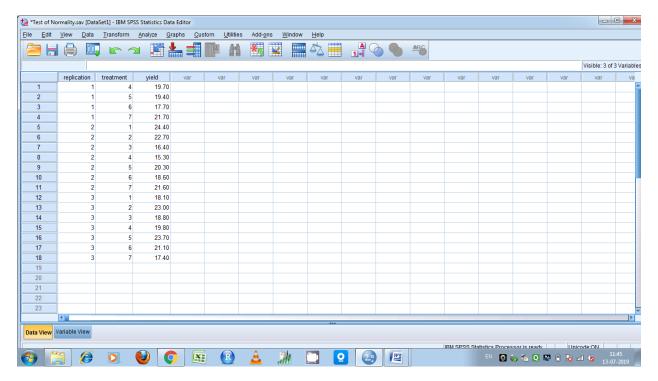
There are three methods to check Normality of Data

- 1) the Z value of Skewness and Kurtosis should be -1.96 to +1.96
- 2) Shapiro Wilk's test significant value should be above 0.05
- 3) with the help of Histogram, Q-Q plot, Box plot

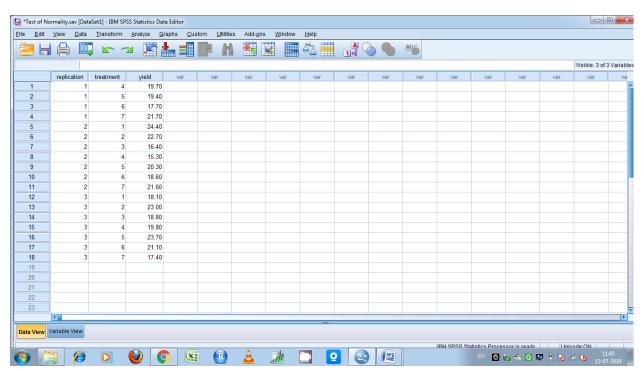
Arrangements of data for SPSS

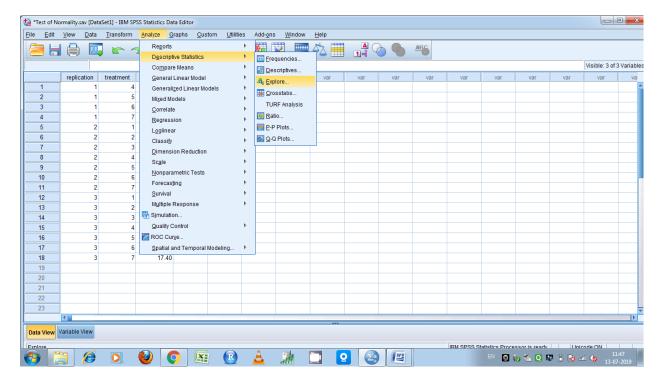

Rep	Trt	yld
1	1	17.8
1	2	20.2
1	3	15.7
1	4	19.7
1	5	19.4
1	6	17.7
1	7	21.7
2	1	24.4

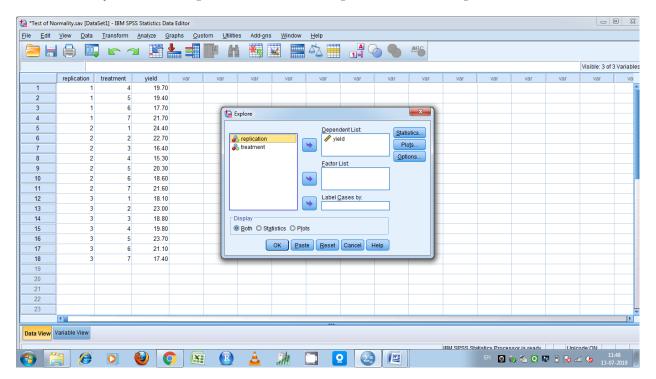
2	2	22.7
2	3	16.4
2	4	15.3
2	5	20.3
2	6	18.6
2	7	21.6
3	1	18.1
3	2	23
3	3	18.8
3	4	19.8
3	5	23.7
3	6	21.1
3	7	17.4

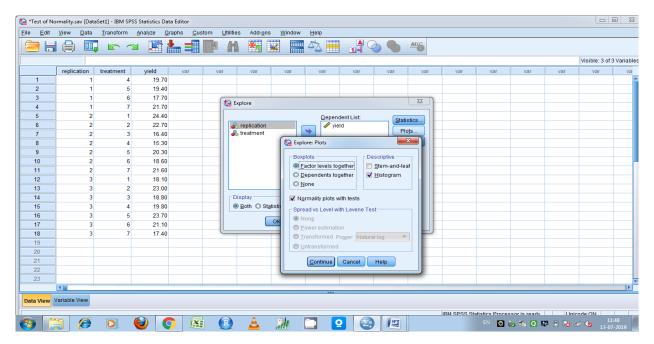

SPSS commands for Analysis

The input data file can be created as shown below:


Step 1: File \rightarrow New \rightarrow Data \rightarrow


Step 2: Variable view \rightarrow Name (replication, treatment, yield) \rightarrow


Step 3: Data view \rightarrow Enter data \rightarrow File \rightarrow Save (with any file name)


Step 4: Analyze \rightarrow Descriptive Statistics \rightarrow Explore \rightarrow

Step 4: Analyze \rightarrow Descriptive Statistics \rightarrow Explore \rightarrow Select dependent variable

Step 5: Plots.. \rightarrow Normality plots with tests \rightarrow OK

Output:

Descriptives

	2000				
			Statistic	Std. Error	
	Mean		19.9833	.60143	
	95% Confidence Interval for Mean	Lower Bound	18.7144		
		Upper Bound	21.2522		
	5% Trimmed Mean		19.9981		
	Median		19.7500		
	Variance		6.511		
yld	Std. Deviation		2.55164		
	Minimum		15.30		
	Maximum		24.40		
	Range		9.10		
	Interquartile Range		3.95		
	Skewness		.026	.536	
	Kurtosis		722	1.038	

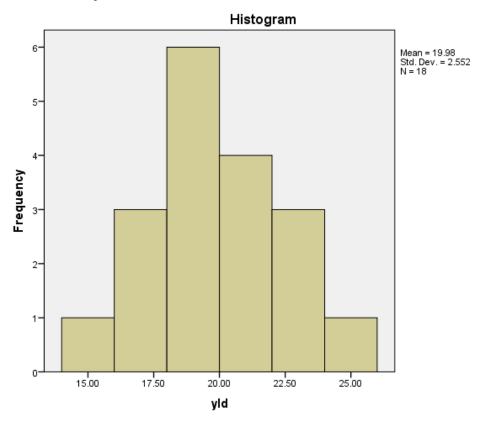
Z value of skewness = 0.026/0.536 = 0.049Z value of Kurtosis = -0.722/1.038 = -0.696

Both are under -1.96 to +1.96 so our data is approximately normally distributed.

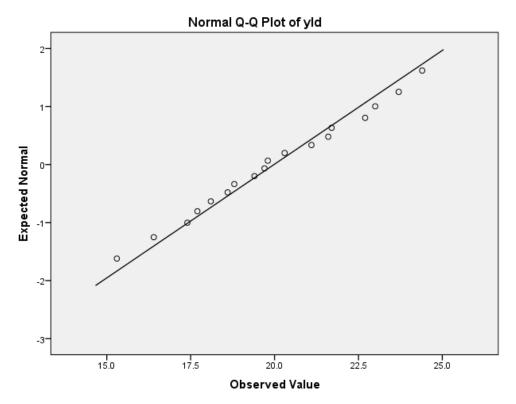
Tests of Normality

Tests of Normality

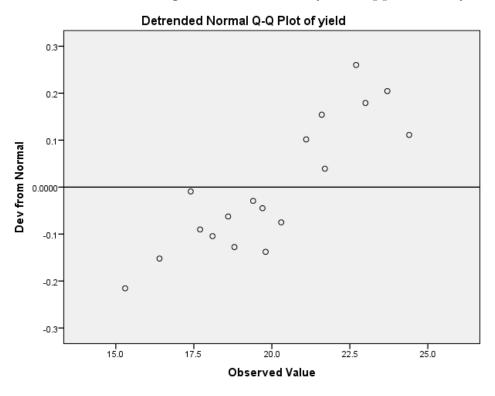
	Kolmogorov-Smirnov ^a			Shapiro-Wilk		
	Statistic	df	Sig.	Statistic	df	Sig.
yld	.084	18	.200 [*]	.983	18	.978

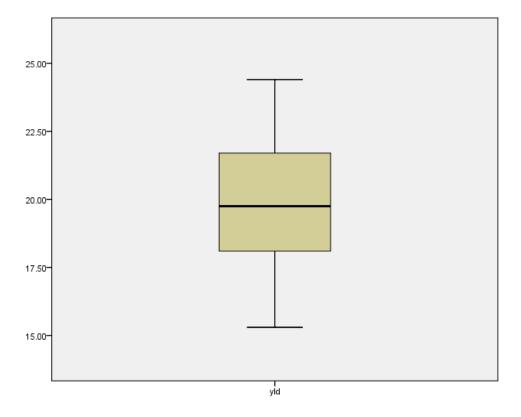

- *. This is a lower bound of the true significance.
- a. Lilliefors Significance Correction

Hypothesis under Shapiro-Wilk's test statistic is defined as:


H_o: The data are normally distributed

H₁: The data are not normally distributed


According to Shapiro-Wilk's test result is non-significant it means, we cannot reject H_{o} it means data are normally distributed



Histogram should have the approximate shape of normal curve.

All points are near about straight line so we can say data approximately normal.

Box plot should be symmetrical as possible

A Shapiro Wilk's test (p>0.05) and a visual inspection of histogram, normal Q-Q plots and box plots showed that the yield was approximately normally distributed.

