

D. S. Dhakre, D. Bhattacharya and Bhola Nath

Institute of Agriculture, Visva-Bharati, Sriniketan West Bengal -731 236, India

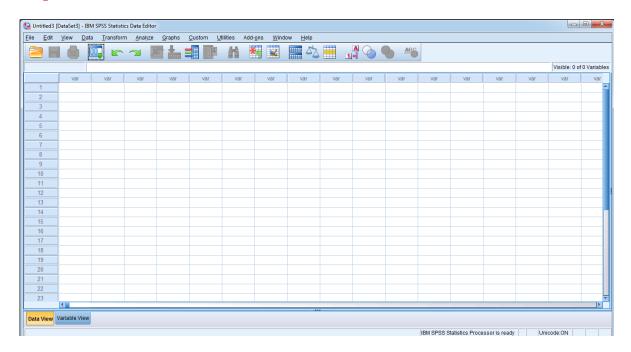
D. S. Dhakre, D. Bhattacharya and Bhola Nath

Institute of Agriculture, Visva-Bharati, Sriniketan West Bengal -731 236, India

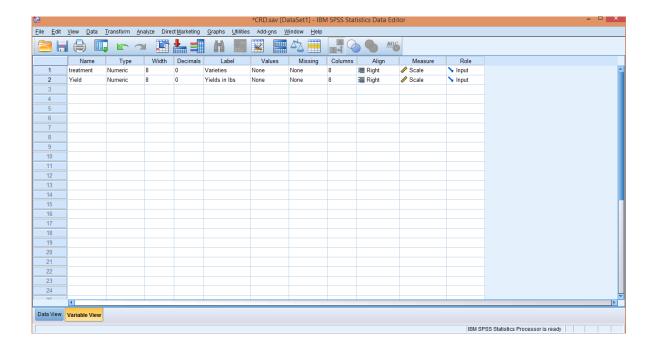
Example:

The following table gives the yields in pound per plot, of five varieties of wheat after being applied to each of 4 plots, tested in a Completely Randomized Design. Carry out the Completely Randomized Design for data.

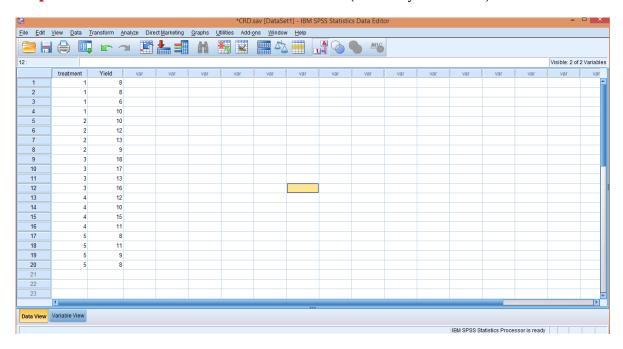
Treatments	Repetitions					
A	8	8	6	10		
В	10	12	13	9		
С	18	17	13	16		
D	12	10	15	11		
Е	8	11	9	8		

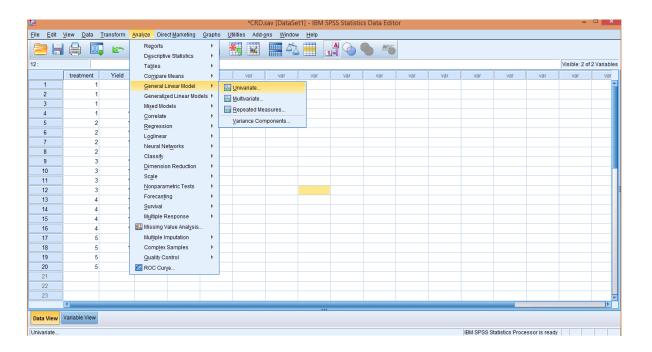

Arragment of Data for Analysis:

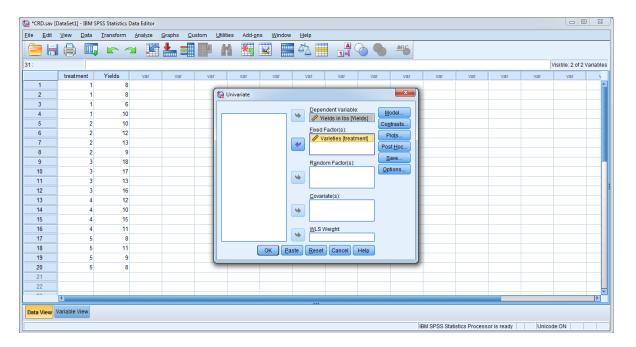
Treatment	Yield
1	8
	10
3	18
2 3 4 5 1 2	12
5	8
1	8
2	12
3	17
4	10
5	11
1	6
1 2 3 4	13
3	13
4	15
5	9
1	10
5 1 2 3	9
3	16
4	11
5	8

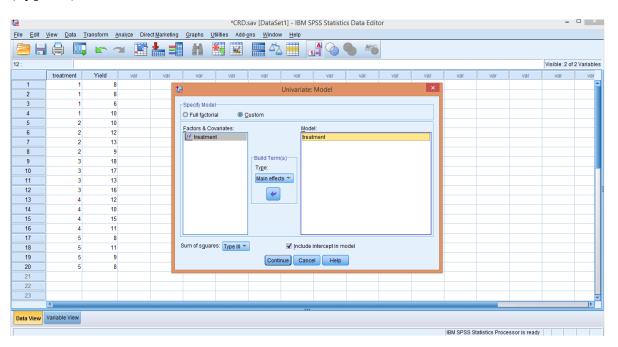

SPSS commands for Analysis:

The input data file can be created as shown below:


Step 1: File \rightarrow New \rightarrow Data \rightarrow


Step 2: Variable view \rightarrow Name (treatment, yield) \rightarrow


Step 3: Data view \rightarrow Enter data \rightarrow File \rightarrow Save (with any file name)

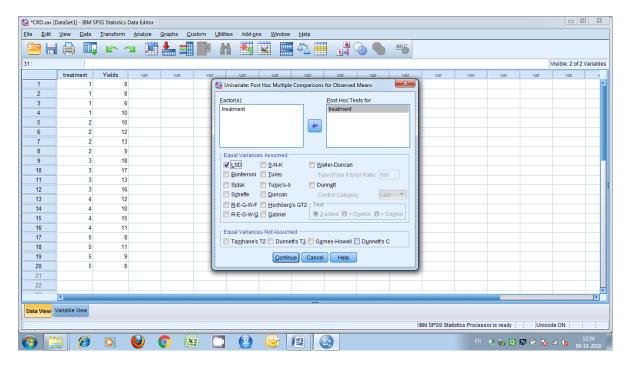

Step 4: Analyze \rightarrow General Linear Model \rightarrow Univariate \rightarrow

Step 5: Dependent variable (yield) → Fixed factors (treatment)

Step 6: Model \rightarrow Custom \rightarrow Main effects \rightarrow Build terms (treat) \rightarrow Sum of Squares (Type III) \rightarrow Continue

Linear model - $y_{ij} = \mu + a_i + \varepsilon_{ij}$; (*i*=1, 2, ..., *k*; *j*=1, 2, ..., *r*)

Yield = μ + Treatment + ε_{ij}


where y_{ij} = Response of the j^{th} replication and i^{th} treatment

 μ = general mean effect

 $a_i = i^{\text{th}}$ treatment effect

 ε_{ij} = error effect with mean=0 and variance = σ^2 [N(0, σ^2)]

Step 7: \rightarrow Posthoc \rightarrow Posthoc Tests for (treatment) \rightarrow LSD \rightarrow OK

Output:

ANOVA -Treatments

Tests of Between-Subjects Effects

Dependent Variable: Yields in lbs

Source	Type III Sum of Squares	df	Mean Square	F	Sig.
Corrected Model	155.200ª	4	38.800	11.192	.000
Intercept	2508.800	1	2508.800	723.692	.000
treatment	155.200	4	38.800	11.192**	.000
Error	52.000	15	3.467		
Total	2716.000	20			
Corrected Total	207.200	19			

a. R Squared = .749 (Adjusted R Squared = .682)

** Significant at 1% level of significance

Yields in lbs

Varieties	Mean	N	Std. Deviation
1	8.00	4	1.633
2	11.00	4	1.826
3	<mark>16.00</mark>	4	2.160
4	12.00	4	2.160
5	9.00	4	1.414
Total	11.20	20	3.302

POSTHOC TESTS - Treatments

Multiple Comparisons

Dependent Variable: Yields in lbs

LSD

LSD	-	Mean Difference			95% Confidence Interval	
(I) Varieties	(J) Varieties	(I-J)	Std. Error	Sig.	Lower Bound	Upper Bound
1	2	-3.00 [*]	1.317	.038	-5.81	19
	3	-8.00 [*]	1.317	.000	-10.81	-5.19
	4	-4.00 [*]	1.317	.008	-6.81	-1.19
	5	-1.00	1.317	.459	-3.81	1.81
2	1	3.00 [*]	1.317	.038	.19	5.81
	3	-5.00 [*]	1.317	.002	-7.81	-2.19
	4	-1.00	1.317	.459	-3.81	1.81
	5	2.00	1.317	.150	81	4.81
3	1	8.00 [*]	1.317	.000	5.19	10.81
	2	5.00 [*]	1.317	.002	2.19	7.81
	4	4.00 [*]	1.317	<mark>.008</mark>	1.19	6.81
	5	7.00 [*]	1.317	.000	4.19	9.81
4	1	4.00 [*]	1.317	<mark>.008</mark>	1.19	6.81
	2	1.00	1.317	.459	-1.81	3.81
	3	-4.00 [*]	1.317	<mark>.008</mark>	-6.81	-1.19
	5	3.00 [*]	1.317	<mark>.038</mark>	.19	5.81
5	1	1.00	1.317	.459	-1.81	3.81
	2	-2.00	1.317	.150	-4.81	.81
	3	-7.00 [*]	1.317	.000	-9.81	-4.19
	4	-3.00 [*]	1.317	<mark>.038</mark>	-5.81	19

Yields in Ibs

	Varieties	N	Subset			
			1	2	3	4
	1 <mark>d</mark>	4	8.00			
5 cd 2 bc 4 b 3 a	5 <mark>cd</mark>	4	9.00	9.00		
	2 ^{bc}	4		11.00	11.00	
	4 <mark>b</mark>	4			12.00	
	3 <mark>a</mark>	4				16.00
	Sig.		.459	.150	.459	1.000

Means for groups in homogeneous subsets are displayed.

Based on observed means.

The error term is Mean Square(Error) = 3.467.

a. Uses Harmonic Mean Sample Size = 4.000.

b. Alpha = 0.05.

Do Yourself

The following table gives the yields in pound per plot of five varieties of wheat after being applied to each of 4 plots, tested in a completely randomized design. Carry out the completely randomized design for data.

Varieties	Repetitions				
A	8	8	6	10	
В	10	12	13	9	
С	18	17	13	16	
D	12	10	15	11	
Е	8	11	9	8	

Reference Books:

- 1. A Hand Book of Agricultural Statistics, S. R. S. Chandel, Achal Prakashan Mandir, Kanpur.
- 2. A Text book of Agricultural Statistics, R. Rangaswamy, New Age International (P) Limited, publishers.
- 3. Biometrical Methods in Quantitative Genetic Analysis, R.K. Singh and B. D. Chaudhary, Kalyani Publishers.
- 4. Design Resources Server: www.iasri.res.in
- 5. E-Manual Winter School IASRI.
- 6. Fundamentals of Mathematical Statistics, S.C. Gupta and V.K. Kapoor, Sultan Chand & Sons Educational Publications.
- 7. Fundamentals Applied Statistics, S.C. Gupta and V.K. Kapoor, Sultan Chand & Sons Educational Publications.

- 8. Programmed Statistics, B.L. Agarwal, New Age International (P) Limited, publishers.
- 9. Probability and Statistical Inference: Theory and Practice, D. Bhattacharya and S. Roy Chowdhury, U. N. Dhur & Sons.
- 10. Statistics Theory and Practice, D. Bhattacharya and S. Roy Chowdhury, U. N. Dhur & Sons.
- 11. Statistical Methods, K.P. Dhamu and K. Ramamoorthy, AGROBIOS (INDIA).
- 12. Statistics for Agricultural Sciences, G. Nageswara Rao, Second Edition, BS Publications, Hyderabad.

